Preview

Сrop Farming and Plant Growing

Advanced search

Modeling the productivity of winter wheat according to soil remote sensing data

Abstract

The relationship between yield and vegetation index for winter wheat was analyzed. Information about the permanent recording of yields, harvested in 2016, for three fields in Minsk and Baranovichi regions was used to write the article. High values of correlation relationship between the data of the mass of harvested grain and the vegetation index obtained from remote sensing data were revealed during the analysis. For data at the end of May, the correlation coefficient may exceed 0.9. It was found also in the course of the study that weed vegetation prevents accurate simulation of yields of winter wheat from space survey data.

About the Authors

V. A. Genin
Институт почвоведения и агрохимии
Belarus


N. V. Klebanovich
Белорусский государственный университет
Belarus


References

1. Remote Sensing of total dry-matter accumulation in winter wheat / C. J. Tucker [et al.] // Remote Sensing оf Environment. – 1981. – Vol. 11, № 3 – P. 171–189.

2. Ball, S. T. Relationship between grain yield and remotely-sensed data in wheat breeding experiments plant breeding / S. T. Ball, C. F. Konzak // Remote Sensing оf Environment. – 1993. – Vol. 110, № 4. – P. 277–282.

3. Quarmby N. A. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction / N. A. Quarmby, M. Milnes, T. L. Hindle // Intern. J. of Remote Sensing. – 1993. – Vol. 14, № 2. – P. 247–262.

4. Operational prediction of crop yields using modis data and products / P. C. Doraiswamya [et al.] // Remote sensing support to crop yield forecast and area estimates XXXVI–8/W48 Workshop proceedings, Stresa, November 30 – December 1, 2006. – P. 137–141.

5. Corn and soybean yield indicators using remotely sensed vegetation index / M. Zhang [et al.] // Proceedings of the 3rd International Conference, Milan, 23–26 June. – P. 403–415.

6. Mapping Grain Sorghum Yield Variability Using Airborne Digital Videograph /C. Yan [et al.] // Precision Agriculture. – 2000. – Vol. 2, № 1. – P. 7–23.

7. Yang, C. Relationships Between Yield Monitor Data and Airborne Multidate Multispectral Digital Imagery for Grain Sorghum / C. Yang, J. H. Everitt // Precision Agriculture. – 2002. – Vol. 3, № 4. – P. 373–384.

8. Peña-Barragán, J. M. Sunflower yield related to multi-temporal aerial photography, land elevation and weed infestation / J. M. Peña-Barragán, F. López-Granados, M. Jurado-Expósito // Precision Agriculture. – 2010. – Vol. 11, № 5. – P. 568–585.

9. Регрессионные модели прогнозирования урожайности зерновых в Украине по спутниковым данным различной природы / Н. Н. Куссуль [и др.] // Наукові праці ДонНТУ. – 2013. – № 17. – С. 94 – 99.

10. Антоненко, В. С. Оценка состояния посевов и прогноз урожайности озимой пшеницы в Украине по данным многоспектральной космической съемки / В. С. Антоненко, Р. В. Гаценко // Наук. праці УкрНДГМІ. – 2005. – № 254. – С. 55–58.

11. Мониторинг урожайности [Электронный ресурс]. – Режим доступа: http://www.poletehnika.com.ua/ru/item/116-monitoring_urozhaynosti. – Дата доступа : 25.03.2018.

12. NDVI – теория и практика [Электронный ресурс]. – Режим доступа : http://gis-lab.info/qa/ndvi.html. – Дата доступа: 25.03.2018.


Review

For citations:


Genin V.A., Klebanovich N.V. Modeling the productivity of winter wheat according to soil remote sensing data. Сrop Farming and Plant Growing. 2018;(4):7-12. (In Russ.)

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2788-550X (Print)