УДК 631.8:633.412

Применение комплексных удобрений для основного внесения и некорневых подкормок при возделывании свеклы столовой

И. Р. Вильдфлуш, доктор с.- х. наук, Н. Э. Хизанейшвили, ассистент Белорусская государственная сельскохозяйственная академия

(Дата поступления статьи в редакцию 12.04.2021 г.)

В статье изложены результаты исследований по применению комплексных удобрений с микроэлементами при возделывании свеклы столовой. Установлено, что предпосевное внесение комплексного АФК удобрения марки 13:12:19 с бором и марганцем, а также некорневые подкормки жидким комплексным удобрением Агрикола вегета аква и водорастворимым комплексным удобрением Лифдрип позволяют значительно повысить урожай корнеплодов свеклы столовой и их качество.

Введение

Применение минеральных удобрений влияет не только на количественные и качественные показатели урожая сельскохозяйственных культур, но и на состояние почвенного плодородия, причем современная стратегия применения минеральных удобрений направлена на сохранение и постепенное повышение уровня плодородия с учетом круговорота питательных веществ в севообороте. Иными словами, следует достигать положительного баланса питательных элементов в почве [1]. При этом интенсификация производства растениеводческой продукции повышает потребность растений не только в макро-, но и микроэлементах [2].

Практический опыт показывает, что наименее энергетически затратным и наиболее эффективным является применение комплексных удобрений с макро- и микроэлементами, которые стали широко применяться со второй половины XX века в развитых странах. Значительная работа по разработке специализированных комплексных удобрений с микроэлементами для основного внесения была проведена в Беларуси в РУП «Институт почвоведения и агрохимии». В итоге представлен перечень различных марок комплексных удобрений для сельскохозяйственных культур [3].

При корневом питании растений ввиду различных причин наблюдается антагонизм между ионами питательных элементов, но при некорневом питании явление антагонизма ионов можно уменьшить или вовсе избежать [4].

В «Государственный реестр средств защиты растений и удобрений...» включено большое количество комплексных удобрений для некорневых подкормок, которые имеют регистрацию практически на всех сельскохозяйственных культурах, возделываемых в Республике Беларусь [5]. Однако имеется очень мало данных об эффективности применения комплексных удобрений как для основного внесения, так и некорневых подкормок при возделывании столовой свеклы на легкосуглинистой почве.

Цель исследований заключалась в изучении влияния комплексных удобрений на динамику нарастания площади листовой поверхности посевов, урожайность и качество корнеплодов свеклы столовой на дерново-

The article presents the results of research on the use of complex fertilizers with microelements in the cultivation of table beets. It was found that the pre-sowing application of a 13:12:19 brand complex fertilizer with boron and manganese, as well as foliar top dressing with Agricola vegeta aqua liquid complex fertilizer and Leafdrip water-soluble complex fertilizer, can significantly increase the productivity of beet root crops and their quality.

подзолистой легкосуглинистой почве, а также на общий и удельный вынос элементов питания.

Методика и объекты исследований

Полевые опыты проводили в 2018–2020 гг. на территории УНЦ «Опытное поле БГСХА» на дерновоподзолистой легкосуглинистой почве, развивающейся на легком лессовидном суглинке, подстилаемом с глубины около 1 м моренным суглинком, на сорте свеклы столовой белорусской селекции Гаспадыня.

Почва опытного участка – с низким и средним содержанием гумуса (1,2–1,8 %), слабокислой и близкой к нейтральной реакцией почвенной среды (рН_{КСІ} – 5,5–6,1), повышенным содержанием подвижных форм фосфора (209,0–266,0 мг/кг почвы) и калия (294,0–295,0 мг/кг почвы), средним содержанием подвижных форм меди и низким и средним содержанием цинка (1,54–1,71 и 1,53–3,75 мг/кг почвы соответственно).

В опытах применяли удобрения: карбамид (46 % N), суперфосфат аммонизированный (42 % P_2O_5 , 10 % N), хлорид калия (60 % K_2O), комплексное АФК удобрение для столовой свеклы марки 13:12:19 с содержанием 0,15 % B, 0,1 % Мп (производитель – Гомельский химический завод), комплексное водорастворимое удобрение Лифдрип (10 % N, 8 % P_2O_5 , 42 % K_2O , 1 % MgO, 3 % SO_3 , 0,025 % Fe, 0,035 % Mn, 0,015 % Zn, 0,003 % Cu, 0,015 % B, 0,003 % Mo) (производитель – Frarimpex, Франция), жидкое комплексное удобрение Агрикола вегета аква (1,8 % N, 1,2 % P_2O_5 , 1,2 % K_2O , 0,2 % гуматов, микроэлементы Cu, Mn, Zn, B) (производитель – ЗАО «Техноэкспорт», Россия).

Минеральные удобрения вносили до сева в один прием под культивацию. ЖКУ Агрикола вегета аква применяли трижды по 3 л/га: через месяц после всходов, через 15 дней после первой обработки и через 15 дней после второй обработки. Комплексное удобрение с микроэлементами Лифдрип использовали в период вегетации дважды: 5 кг/га в фазе 3—4 листа и через месяц после первой подкормки в такой же дозе.

Общая площадь делянки – 14,4 м², учетная – 10,8 м², повторность опыта – четырехкратная. Предшественник – картофель. Сев столовой свеклы осуществляли в I декаде мая по однострочной схеме на ровной поверхности

с междурядьем 45 см, весовая норма высева составила 12 кг/га. Агротехника возделывания – общепринятая для Беларуси [6].

Результаты исследований и их обсуждение

В фазе технической спелости наибольшая площадь листьев у растений свеклы была в варианте с обработкой посевов комплексным удобрением с микроэлементами Лифдрип на фоне $N_{90}P_{80}K_{130}-1276,1\ cm^2$, что на 196,7 см² выше, чем в фоновом варианте. По сравнению с вариантом 3, где применяли карбамид, аммонизированный суперфосфат и хлорид калия в дозе $N_{90}P_{80}K_{130}$, комплексное АФК удобрение с бором и марганцем, применяемое в такой же дозе, повышало площадь листьев столовой свеклы на 153,3 см². К моменту уборки урожая площадь листовой поверхности во всех вариантах опыта уменьшалась из-за естественного отмирания листьев у растений свеклы и оттока питательных веществ из них в корнеплод (таблица 1).

Основное внесение комплексного АФК удобрения с бором и марганцем обеспечило повышение урожая

корнеплодов свеклы по сравнению с фоном на 8,3 т/га, а окупаемость 1 кг NPK кг корнеплодов — 102 кг (таблица 2). ЖКУ Агрикола вегета аква и комплексное удобрение с микроэлементами Лифдрип на фоне $N_{90}P_{80}K_{130}$ повышали урожай корнеплодов на 3,6 и 6,2 т/га. Окупаемость 1 кг NPK кг корнеплодов в этих вариантах составила 86 и 95 кг соответственно.

Наибольшая доля товарных корнеплодов (96,2 %) была получена в варианте с применением комплексного АФК удобрения с $B_{0,15}Mn_{0,1}$, что на 7,6 % выше, чем в фоновом варианте (таблица 3).

На содержание сухого вещества и сахаров в корнеплодах свеклы наиболее существенное влияние оказывало комплексное удобрение Лифдрип на фоне $N_{90}P_{80}K_{130}$, от применения которого содержание сухого вещества и сахаров повышалось на 2,1 и 3,1 % соответственно. В этом же варианте была наибольшей средняя масса корнеплода — 261 г.

Применение комплексного АФК удобрения с бором и марганцем увеличивало содержание азота в корнеплодах на 0,22 % по сравнению с фоном, при этом

Таблица 1 – Влияние комплексных удобрений на динамику площади листовой поверхности растений свеклы столовой (среднее, 2018–2020 гг.)

Banuau u	Площадь листовой поверхности одного растения, см²						
Вариант	3–4 листа	начало формирования корнеплода	техническая спелость	уборка			
1. Контроль (без удобрений)	51,9	633,9	801,2	738,8			
2. N ₇₀ P ₆₀ K ₁₀₀	65,5	695,9	889,2	831,9			
3. N ₉₀ P ₈₀ K ₁₃₀ – фон	65,3	723,3	1079,4	1033,8			
4. АФК (N ₉₀ P ₈₀ K ₁₃₀) + B _{0,15} Mn _{0,1}	65,6	733,5	1232,7	1127,0			
5. Фон + Агрикола вегета аква	65,4	732,3	1181,3	1 114,9			
6. Фон + Лифдрип	66,5	733,6	1276,1	1148,5			
HCP ₀₅	3,3	26,4	51,4	42,1			

Таблица 2 – Влияние комплексных удобрений на урожай корнеплодов свеклы столовой

Вариант	Урожайность, т/га				Прибавка	Прибавка	Окупаемость	
	2018 г.	2019 г.	2020 г.	среднее	к контролю, т/га	к фону, т/га	1 кг NPK, кг корнеплодов	
1. Контроль (без удобрений)	17,4	23,3	30,7	23,8	_	-	-	
2. N ₇₀ P ₆₀ K ₁₀₀	37,7	40,5	38,4	38,9	15,1	-	66	
3. N ₉₀ P ₈₀ K ₁₃₀ – фон	42,6	46,9	48,5	46,0	22,2	-	74	
4. A Φ K (N ₉₀ P ₈₀ K ₁₃₀) + B _{0,15} Mn _{0,1}	51,1	56,9	54,9	54,3	30,5	-	102	
5. Фон + Агрикола вегета аква	45,7	52,4	50,6	49,6	25,8	3,6	86	
6. Фон + Лифдрип	48,1	54,4	54,1	52,2	28,4	6,2	95	
HCP ₀₅	1,9	2,3	1,6	1,7	_	_	-	

Таблица 3 – Влияние комплексных удобрений на показатели качества корнеплодов свеклы столовой (среднее, 2018–2020 гг.)

Вариант	Товарность, %	Сухое вещество,	Caxapa, %	Нитраты, мг/кг сырой массы			Масса корнеплода,
	70			2018 г.	2019 г.	2020 г.	г
1. Контроль (без удобрений)	68,6	14,0	10,4	882	645	101	107
2. N ₇₀ P ₆₀ K ₁₀₀	85,0	13,5	11,1	1078	870	157	154
3. N ₉₀ P ₈₀ K ₁₃₀ – фон	88,6	14,7	11,8	1341	1025	339	195
4. A Φ K (N ₉₀ P ₈₀ K ₁₃₀) + B _{0,15} Mn _{0,1}	96,2	16,3	13,8	1203	808	355	235
5. Фон + Агрикола вегета аква	89,6	15,4	12,5	1125	836	103	218
6. Фон + Лифдрип	94,9	16,8	14,9	1231	820	166	261
HCP ₀₅	2,5	0,6	0,7	58	39	52	10

в ботве содержание азота снижалось на 0,78 % (таблица 4).

Содержание фосфора в корнеплодах значительно не изменялось, за исключением варианта с применением комплексного АФК удобрения с бором и марганцем, где содержание фосфора повышалось на 0,14 %.

В ботве содержание фосфора значительно – на 0,19 % повышалось также в варианте применения комплексного АФК удобрения с бором и марганцем (таблица 4).

Содержание калия в корнеплодах свеклы, в отличие от его содержания в ботве, было более стабильным и существенно не изменялось при применении удобрений.

Известно, что оптимальное содержание меди в растениеводческой продукции составляет 7–12 мг/кг сухой массы, цинка – 20–40 мг/кг, марганца – 40–70 мг/кг [7].

В вариантах с применением комплексных удобрений Агрикола вегета аква и Лифдрип на фоне $N_{90}P_{80}K_{130}$ в корнеплодах накапливалось меди 6,13 и 5,80 мг/кг, что было наиболее близким к нижней границе оптимального значения. В этих же вариантах опыта содержание цинка

в корнеплодах свеклы было наиболее близким к оптимальному значению – 17,09 и 17,61 мг/кг. В варианте с применением комплексного АФК удобрения с бором и марганцем содержание марганца в корнеплодах было оптимальным – 68,78 мг/кг.

Изучаемые комплексные удобрения способствовали увеличению выноса азота, фосфора и калия. Наибольший общий вынос азота был в вариантах с применением комплексных удобрений как для основного внесения, так и для некорневых подкормок – от 201 до 207 кг/га (таблица 5).

Максимальный вынос фосфора – 108 кг/га и калия – 504 кг/га наблюдался в варианте применения комплексного АФК удобрения с бором и марганцем.

Наибольшее значение удельного выноса азота отмечено в варианте $N_{90}P_{80}K_{130}$ + Агрикола вегета аква – 4,2 кг/т, фосфора – в варианте с применением комплексного АФК с бором и марганцем – 2,0 кг/т, калия – в варианте $N_{90}P_{80}K_{130}$ + Лифдрип – 9,4 кг/т.

Наибольший общий вынос микроэлементов был в вариантах с применением комплексного АФК удобрения

Таблица 4 – Влияние комплексных удобрений на содержание элементов питания в корнеплодах и ботве свеклы столовой (среднее, 2018–2020 гг.)

Вариант	Содержание макро- (%) и микроэлементов (мг/кг сух. массы)							
	N	P ₂ O ₅	K ₂ O	Cu	Zn	Mn		
1. Контроль (без удобрений)	1,01 2,06	0,69 0,97	3,65 5,65	3,60 7,74	12,13 18,35	27,23 165,88		
2. N ₇₀ P ₆₀ K ₁₀₀	1,35 2,65	<u>0,67</u> 0,93	$\frac{3,44}{4,70}$	3,99 8,78	11,75 21,32	23,25 156,22		
3. N ₉₀ P ₈₀ K ₁₃₀ – фон	1,35 2,89	0,65 0,99	$\frac{3,71}{4,34}$	4,73 8,27	12,96 21,82	30,34 179,03		
4. АФК (N ₉₀ P ₈₀ К ₁₃₀) + В _{0,15} Мп _{0,1}	1,57 2,11	0,79 1,18	3,94 4,74	5,77 7,75	15,93 26,30	68,78 502,83		
5. Фон + Агрикола вегета аква	1,54 2,82	0,71 0,99	3,50 5,45	6,13 8,63	17,09 26,71	31,96 234,08		
6. Фон + Лифдрип	1,32 2,61	0,71 1,05	3,69 5,13	5,80 9,30	17,61 30,98	33,52 318,55		
HCP ₀₅	0,08 0,12	0,06 0,07	$\frac{0,24}{0,24}$	0,255 0,490	0,789 1,250	1,770 17,154		

Примечание - Содержание элементов питания: в числителе - в корнеплодах, в знаменателе - в ботве.

Таблица 5 – Общий и удельный вынос элементов питания растениями свеклы столовой в зависимости от применения комплексных удобрений (среднее, 2018–2020 гг.)

	Вынос макро- и микроэлементов						
Вариант		кг/га, кг/т		г/га, г/т			
	N	P ₂ O ₅	K ₂ O	Cu	Zn	Mn	
1. Контроль (без удобрений)	<u>64</u>	37	<u>209</u>	<u>23,3</u>	<u>70,3</u>	351,6	
	2,7	1,6	8,8	1,0	2,8	13,8	
2. N ₇₀ P ₆₀ K ₁₀₀	127	55	<u>281</u>	39,4	<u>108,8</u>	456,5	
	3,3	1,4	7,2	1,0	2,8	11,7	
3. N ₉₀ P ₈₀ K ₁₃₀ – фон	171	71	371	<u>53,7</u>	<u>148,2</u>	700,9	
	3,7	1,6	8,1	1,2	3,2	15,2	
4. АФК (N ₉₀ P ₈₀ K ₁₃) + B _{0,15} Mn _{0,1}	<u>207</u>	108	<u>504</u>	74,9	225,6	<u>2227,3</u>	
	3,8	2,0	9,3	1,4	4,2	41,2	
5. Фон + Агрикола вегета аква	206	85	440	71,9	215,5	1006,3	
	4,2	1,7	8,9	1,5	4,3	20,0	
6. Фон + Лифдрип	201	96	488	79,2	<u>253,2</u>	1269,3	
	3,8	1,8	9,4	1,5	4,9	24,6	

Примечание – Вынос элементов питания: в числителе – общий, в знаменателе – удельный.

с бором и марганцем и в варианте $N_{90}P_{80}K_{130}$ + Лифдрип и составил по меди 504 и 488 г/га, по цинку – 74,9 и 79,2, по марганцу – 2227,3 и 1269,3 г/га соответственно.

Удельный вынос меди и цинка по вариантам опыта существенно не изменялся, однако удельный вынос марганца при применении комплексных удобрений по сравнению с фоновым вариантом возрастал в 1,3–2,7 раза (таблица 5).

Выводы

- 1. Комплексные удобрения к моменту уборки значительно увеличивали площадь листовой поверхности растений свеклы столовой, что и предопределило наибольшую урожайность корнеплодов в этих вариантах. Наибольшая площадь листовой поверхности была в вариантах применения комплексного АФК удобрения с $B_{0,15}$ и $Mn_{0,1}$ и Лифдрип на фоне $N_{90}P_{80}K_{130}-1127,0$ и 1148,5 см². В этих же вариантах урожайность корнеплодов за годы исследований была наибольшей и составила 54,9 и 54,1 т/га соответственно.
- 2. Наибольшее количество сухого вещества в корнеплодах (16,8 %) и сахаров (14,9 %) было в варианте с двукратной обработкой посевов свеклы комплексным удобрением с микроэлементами Лифдрип на фоне $N_{90}P_{80}K_{130}$. Применение комплексных удобрений не приводило к повышению содержания нитратов в корнеплодах свеклы свыше ПДК.
- 3. В результате применения комплексных удобрений в основной и побочной продукции свеклы столовой возрастало содержание макро- и микроэлементов и, в связи

с повышением урожайности, увеличивался общий вынос элементов питания.

Литература

- Столяров, А. И. Рекомендации по применению жидких комплексных удобрений в овощеводстве / А. И. Столяров, Э. К. Эйсерт, Ю. Е. Владимирский; под ред. Л. В. Ушкановой. Краснодар: Произв. упр. сел. хоз-ва Краснодарского крайисполкома, 1979. 20 с.
- Петриченко, В. Н. Применение регуляторов роста растений нового поколения на овощных культурах / В. Н. Петриченко, С. В. Логинов // Агрохимический вестник. – 2010. – № 2. – С. 24–26
- 3. Комплексные удобрения для сельскохозяйственных культур: перспективные разработки / В. В. Лапа [и др.] // Почвоведение и агрохимия. 2009. № 1 (42). С. 197–201.
- 4. Хизанейшвили, Н. Э. Влияние макро- и микроудобрений на урожайность корнеплодов столовой свеклы, их качество и вынос элементов питания / Н. Э. Хизанейшвили // Вестник БГСХА. 2020. № 3. С. 94–98.
- Государственный реестр средств защиты растений и удобрений, разрешенных к применению на территории Республики Беларусь / М-во сел. хоз-ва и продовольствия РБ, ГУ «Главная гос. инспекция по семеноводству, карантину и защите растений»; сост.: А. В. Пискун [и др.]. Минск: «Промкомплекс», 2017. 688 с.
- 6. Организационно-технологические нормативы возделывания овощных, плодовых, ягодных культур и выращивания посадочного материала: сб. отраслевых регламентов / Нац. акад. наук Беларуси, РУП «Ин-т системных исследований в АПК НАН Беларуси». Минск: Беларуская навука, 2010. 518 с.
- 7. Эффективность применения микроудобрений и регуляторов роста при возделывании сельскохозяйственных культур / И. Р. Вильдфлуш [и др.]. Минск: Беларус. навука, 2011. 293 с.

УДК 631.811.2:633.521:631.442.1

Эффективность фосфорного удобрения при возделывании льна-долгунца на супесчаной почве

В. А. Прудников, доктор с.-х. наук, Н. В. Степанова, Д. П. Чирик, кандидаты с.-х. наук, С. Р. Чуйко, С. В. Любимов, научные сотрудники Институт льна

(Дата поступления статьи в редакцию 11.02.2021 г.)

В работе представлены результаты исследований по влиянию фосфорного удобрения на содержание волокна в тресте и урожайность льнопродукции при возделывании льна-долгунца на дерново-подзолистой связносупесчаной почве. При содержании в пахотном слое 160—165 мг/кг почвы подвижных фосфатов оптимальной дозой фосфорного удобрения установлена 30 кг/га д. в., что обеспечило урожайность семян 7,0 ц/га, тресты—45,6, волокна—13,8, в том числе длинного—8,2 ц/га, рентабельность производства—43 %. В общем выносе фосфора урожаем льна доля фосфорного удобрения составляет 5—6 %, потребление фосфора из почвы—94—95 %.

Введение

Среди супесчаных почв пригодными для посева льна-долгунца являются дерново-подзолистые связно-супесчаные, подстилаемые суглинком и песком, рыхло-супесчаные, подстилаемые суглинком [1]. В сравнении с суглинистыми супесчаные почвы характеризуются меньшим содержанием физической глины, минеральных

The paper presents the results of a study on the effect of phosphorus fertilization on the fiber content in the trust and the yield of products when cultivating flax on sod-podzolic sandy loam soil. With the content of mobile phosphates in the arable layer of 160-165 mg/kg of soil, the optimal dose of phosphorus fertilizer was set at 30 kg/ha, which ensured seed yield 7.0 c/ha, trusts -45.6, fiber -13.8, including $\log -8.2$ c/ha, profitability of production -43 %. In the total removal of phosphorus by the flax crop, the proportion of phosphorus fertilizer is 5-6 %, and 94-95 % of phosphorus is consumed by flax from the soil.

и органических коллоидов, гумуса, элементов питания и менее устойчивым водным режимом.

Определяющим фактором эффективности минеральных удобрений в формировании урожайности культуры является азотное удобрение, однако роль других элементов питания не менее значительна, в том числе фосфора. При возделывании льна-долгунца на дерновоподзолистой среднесуглинистой почве установлено,