Литература

- Боронникова, С. В. Молекулярное маркирование и генетическая паспортизация ресурсных и редких видов растений с целью оптимизации сохранения их генофондов / С. В. Боронникова // Аграрный вестник Урала, 2009. – № (56). – С. 57–59.
- 2. Омаров, Д. С. К методике учета и оценки гетерозиса у растений / Д. С. Омаров // Сельскохозяйственная биология. 1975. Т. 10. № 1. С. 123–127.
- Микросателлитный анализ линейного материала сахарной свеклы / А. М. Свирщевская [и др.] // Генетика и биотехнология XXI века. Фундаментальные и прикладные аспекты: материалы Международной научной конференции. – Минск. – 2008. – С. 160–162.
- Сателлитные ДНК / В. Хемлебен [и др.] // Успехи биологической химии. – 2003. – Т. 43. – С. 267–306.
- Использование RAPD-маркеров для оптимизации отбора исходного материала перца сладкого (Capsicum annuum L.)

- в селекции на гетерозис / М. Н. Шаптуренко [и др.] // Вавиловский журнал генетики и селекции. 2013. Т. 17. № 1. С. 63–71.
- Efficient and nontoxic dna isolation method for pcr analysis / A. S. Hussein [et al.] // Russian Agricultural Sciences. – 2014, T. 40. – № 3. – C. 177.
- Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (*Triticum aestivum* L.) / K. Krystkowiak [et al.] // Euphytica. – 2009. – Vol. 165. – P. 419–434.
- 8. Polymorphic microsatellite markers for inferring diversity in wild and domesticated sugar beet (*Beta vulgaris* L.) / C. M. Richards [et al.] // Mol. Ecol. Notes. 2004. № 4. P. 243–245.
- Comparison of genetic and morphological distance with heterosis between Medicago sativa and subsp. Falcate / H. Riday [et al.] // Euphytica. – 2003. – Vol. 131. – P. 37–45.

УДК 633.63:631.526.32(476)

Сорт – основа урожая

В. А. Бейня, Н. Ф. Рубан

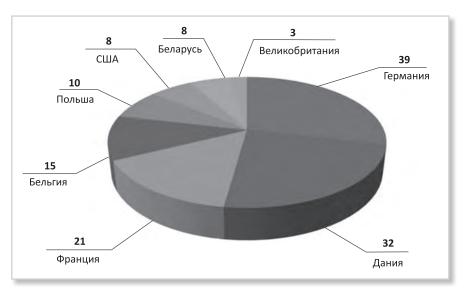
Государственная инспекция по испытанию и охране сортов растений, Беларусь

Среди полевых культур, возделываемых в нашей стране, сахарная свекла является важнейшей технической культурой. Она дает сырье для получения ценнейшего продукта питания – сахара. Из общего производства сахара в мире на долю сахарной свеклы приходится около 40 %, а в странах с умеренно теплым и умеренным климатом она является единственным источником получения этого продукта. Поэтому и в мировых масштабах в целом, и в масштабах нашей страны свекловичный сахар остается значительной составляющей пищевого баланса. Высокая энергетическая емкость и лабильность как непосредственного питательного вещества (пищевого продукта), простота использования в сочетании с традиционно устойчивыми вкусовыми привычками человека к сладостям гарантируют сахару неопределенно длительную перспективу.

По энергетическому эквиваленту сахар в пищевом рационе европейца составляет 12 %, а сахарная свекла

в мировом табели рангов пищевых ресурсов растениеводства занимает 14-е место. Исторически свекловодство всегда было связано с повышением уровня научно-технического прогресса в земледелии.

В обеспечении республики собственным сахаром одно их главных мест принадлежит сорту. Сорт – важнейшее средство производства, определяющее во многом эффективность земледелия. Рост продуктивности сельскохозяйственных растений без внедрения в производство новых сортов в полной мере невозможен.


Основной целью государственного испытания гибридов сахарной свеклы является изучение и подбор лучших для возделывания в Республике Беларусь гибридов, обладающих высокой урожайностью, сахаристостью, пригодностью к промышленной пе-

реработке, а также устойчивостью к различным заболеваниям.

Испытание сахарной свеклы в Республике Беларусь проводится на 5 сортоиспытательных станциях и участках, в четырех сырьевых зонах сахарных заводов.

По состоянию на 1 января 2019 г. в Государственный реестр сортов включено 136 гибридов сахарной свеклы, предназначенных для возделывания в Брестской, Гомельской, Гродненской, Минской и Могилевской областях. Гибриды сахарной свеклы представлены такими странами, как Германия (39 гибридов), Дания (32), Франция (21), Бельгия (15), Польша (10), Беларусь (8 гибридов, из них совместной селекции с Сербией 2 гибрида и Германией – 1 гибрид), США (8), Великобритания (3 гибрида) (рисунок).

В последние годы в сортоиспытании сахарной свеклы отмечается высокая конкуренция среди испытуемых гибридов. В среднем за последние 5 лет,

Количество гибридов сахарной свеклы, включенных в Государственный реестр сортов

16 Земледелие и защита растений № 5, 2019

в сортоиспытании находится от 80 до 106 гибридов. В Государственный реестр сортов включаются гибриды с высокой урожайностью – свыше 650 ц/га, сахаристостью – свыше 17,1 %. Включенные в Государственный реестр гибриды обладают высокими технологическими показателями. Большинство новых включенных гибридов сахарной свеклы имеют более двух признаков устойчивости к болезням.

При проведении анализа гибридов сахарной свеклы, включенных в Государственный реестр сортов за 2015-2019 гг., к лучшим в группе сахаристых следует отнести Агроном, Альгерд, Гулливер, БТС 665, БТС 590, Матрос, Пикассо, Клерамакс. Все перечисленные гибриды сахарной свеклы обладают сахаристостью свыше 17,5 %, а вероятный выход сахара составляет от 99 ц/га до 105,9 ц/га. Наибольшую группу районированных гибридов составляют совмещенные гибриды, сочетающие высокую урожайность с высокой сахаристостью. Лучшими гибридами в данной группе являются Фронтера, Ливада КВС, Шкипер, Игор, Сплендор, Курлис, Силанто, Чарльстон, Белполь. Потенциал урожайности у перечисленных гибридов составляет от 673 ц/га до 721 ц/га, сахаристость – от 17,1 % до 17,8 %, а вероятный выход сахара - от 100,3 ц/га до 107,5 ц/га. К лучшим гибридам урожайного направления относится Пушкин, Яшек, Живаго, Фантазия, Эгретта. Средняя урожайность составляет от 98,5 ц/га до 105,6 ц/га, а средний выход сахара у данных гибридов составил от 98,5 ц/га до 105,6 ц/га.

При сравнительно высокой урожайности и сахаристости, а также за счет низкого содержания мелассообразующих веществ высокий выход сахара на заводе отмечен у гибридов Гулливер, БТС 665, Фронтера, Пуш-

кин, Живаго. Средний выход сахара у данных гибридов составил 100.7–107.5 ц/га.

За последние 20 лет, благодаря целенаправленной работе селекционеров, происходит существенное повышение продуктивности и улучшение качества гибридов сахарной свеклы. Если в государственном испытании гибридов сахарной свеклы в 1999—2001 гг. средняя урожайность составляла 601 ц/га, а сахаристость — 16,4 %, то по результатам испытания за 2016—2018 гг. средняя урожайность составила 668 ц/га (+67 ц/га), а сахаристость — 17,2 % (+0,8 %).

Таким образом:

- по результатам государственного испытания гибридов сахарной свеклы в Государственном реестре сортов находится 136 гибридов, из них за последние 5 лет включено 67 гибридов;
- гибриды сахарной свеклы, включенные в Государственный реестр сортов, представлены следующими странами: Германия (39 гибридов), Дания (32), Франция (21), Бельгия (15), Польша (10), Беларусь (8 гибридов, из них совместной селекции с Сербией 2 гибрида и Германией 1 гибрид), США (8), Великобритания (3 гибрида);
- внедрение в производство новых гибридов сахарной свеклы, обладающих высоким потенциалом урожайности и высокой сахаристостью, хорошими технологическими показателями важнейший резерв увеличения производства и снижения его себестоимости (таблица).

Литература

- 1. Государственный реестр сортов. Минск, 2019. С. 43–45.
- Результаты испытания сортов сельскохозяйственных культур в Республике Беларусь за 1999–2001 годы. – С. 44.

Лучшие гибриды сахарной свеклы, включенные за 2015-2019 гг. в Государственный реестр сортов

Гибрид	Тип	Урожай- ность, ц/га	Сахари- стость, %	Сбор сахара, ц/га	Вероятный выход сахара, ц/га	Содержание, ммоль-экв. на 100 г		
						К	Na	N
Матрос	Z	677	17,5	117,9	101,3	5,46	0,45	2,63
Альгерд	Z	673	17,8	118,8	103,4	5,05	0,41	2,23
Пикассо	Z	699	17,5	122,1	105,9	5,08	0,49	2,16
Гулливер	Z	677	17,7	119,9	103,6	5,57	0,24	1,43
БТС 665	Z	681	17,7	120,1	101,7	6,35	0,27	1,56
БТС 590	Z	695	17,5	120,6	101,4	6,28	0,24	2,25
Агроном	Z	685	17,8	121,2	103,6	5,96	0,21	1,93
Фронтера	NZ	704	17,8	125,2	107,5	5,86	0,20	1,58
Курлис	NZ	684	17,5	118,7	101,3	5,91	0,19	1,82
Силанто	NZ	673	17,5	117,4	101,5	5,18	0,44	2,38
Чарльстон	NZ	677	17,4	117,3	101,2	5,16	0,42	2,52
Ливада КВС	NZ	721	17,1	123,0	106,0	5,36	0,48	2,29
Шкипер	NZ	698	17,8	123,6	105,3	6,11	0,27	1,76
Белполь	NZ	692	17,3	119,9	100,3	6,62	0,24	2,24
Сплендор	NZ	680	17,7	120,2	102,1	6,21	0,20	1,84
Игор	NZ	702	17,3	119,1	103,3	5,83	0,20	1,97
Эгретта	NE	679	17,0	114,8	98,5	5,42	0,41	2,39
Фантазия	N	706	17,0	118,7	101,4	5,66	0,43	2,51
Пушкин	N	695	17,5	121,6	105,6	5,34	0,21	1,44
Живаго	N	691	17,1	117,5	100,7	5,65	0,23	1,57
Яшек	N	724	17,0	122,3	101,8	6,60	0,33	2,08

3емледелие и защита растений № 5, 2019

- 3. Результаты испытания сортов кукурузы, однолетних и многолетних трав, кормовой и сахарной свеклы на хозяйственную полезность в Республике Беларусь за 2012–2014 годы. – С 108–143
- Результаты испытания сортов растений кукурузы, однолетних и многолетних трав, свеклы сахарной и кормовой на хозяйственную полезность в Республике Беларусь за 2013–2015 годы. – С. 116–146.
- Результаты испытания сортов кукурузы, однолетних и многолетних трав, сорго венечного, свеклы сахарной и кормо-
- вой на хозяйственную полезность в Республике Беларусь за 2014–2016 годы. С. 114–143.
- 6. Результаты испытания сортов кукурузы, однолетних и многолетних трав, сорго венечного, свеклы сахарной и кормовой на хозяйственную полезность в Республике Беларусь за 2015–2017 годы. С. 143–182.
- Результаты испытания сортов кукурузы, однолетних и многолетних трав, сорго венечного, свеклы сахарной и кормовой на хозяйственную полезность в Республике Беларусь за 2016–2018 годы. – С. 134–171.

УДК 633.63:631.527

Экологическое сортоиспытание гибридов сахарной свеклы

Ш. О. Бастаубаева, К. Т. Конысбеков, Н. Т. Мусогоджаев, Р. Елназаркызы Казахский НИИ земледелия и растениеводства, Казахстан

В мировой экономике сахарная промышленность является важной, активно развивающейся, стабильной отраслью. Достаточно отметить, что с начала прошлого столетия производство сахара на планете возросло более чем в десять раз. Однако в последние годы для отрасли в целом складывалась неблагоприятная ситуация, мировое производство сахара упало на 7–8 %. Проблема получения устойчивых урожаев сахарной свеклы является наиболее острой и сложной, так как производство сахара в значительной степени зависит от стабильности природных условий [1].

Для решения проблемы стабильного получения высоких урожаев требуется изучение адаптивной способности, экологической стабильности и оценка среды для отбора гибридов сахарной свеклы, более устойчивых в местных природно-климатических условиях, что вызывает определенный научный и практический интерес.

Основная задача экологического сортоиспытания – оценка новых перспективных сортов и гибридов по важнейшим хозяйственно ценным признакам перед сдачей их в государственное сортоиспытание. При этом выделяются образцы, сочетающие продуктивность и стабильность при изменяющихся экологических условиях [2].

В настоящее время особую значимость приобретает вопрос выявления хозяйственно полезных признаков (урожайность, сахаристость, сбор сахара) гибридов сахарной свеклы [3, 4]. По мнению А. В. Корниенко, М. Г. Мазепина [5], одной из актуальных задач селекционной работы является создание гибридов с высокой потенциальной продуктивностью и широкой адаптивной способностью. В связи с этим авторы считают, что ЭСИ – последний этап селекционного процесса, на котором выявляются адаптивные различия перспективных гибридов и проводится отбор наиболее стабильных из них по урожайности и другим хозяйственно ценным признакам [6].

Площадь под питомником экологического испытания – 0,3 га. Изучены 20 (10 – украинской селекции, 6 – российской селекции и 4 – отечественной селекции) образцов и линий отечественной и зарубежной селекции.

Климат. В общих чертах климат резкоконтинентальный. По многолетним данным метеостанции КазНИИЗиР,

среднегодовая температура воздуха составляет +7,6 °C. Самый жаркий месяц года — июль со среднемесячной температурой воздуха 10,8 °C. Температура ниже 5 °C устанавливается во второй — третьей декаде октября. Устойчивый снежный покров образуется в конце ноября — начале декабря и лежит 85—100 дней. Сумма положительных температур за период активной вегетации растений (апрель — сентябрь) достигает 3429 °C. За этот же преиод высота атмосферных осадков в регионе колеблется в больших пределах — от 110,2 до 435,3 мм. По среднемноголетним данным, основное количество осадков выпадает в весенний период.

Агрометеорологические условия за период вегетации сахарной свеклы в год ипытания сортообразцов (2018 г.) были разнообразными. Сахарная свекла была посеяна 15 апреля, когда среднесуточная температура воздуха была равна +19,2 °C, максимальная – 24,8 °C и минимальная – 14,0 °C. В первые дни третьей декады апреля наблюдалась высокая температура воздуха. В дневные часы она составляла 20–28 °C. Среднемесячная температура воздуха в апреле составила +12,4 °C, что на 2,0 °C выше среднемноголетней (+10,4 °C). Количество атмосферных осадков с 1 по 31 апреля составило 81,6 мм, сумма осадков во второй и третьей декаде месяца – 42,7 мм (таблица 1).

В 2018 г. продуктивность изучаемых гибридов сахарной свеклы была довольно высокой: от 578,2 до 1174,2 ц/га. Наиболее полно реализован потенциал продуктивности у гибридов РМС-136, РМС-135, София, Герой, Айшолпан, Аксу. Более высокая продуктивность получена: по гибриду РМС-136 урожайность корнеплодов составила 869,5 ц/га, сахаристость — 16,5 %, сбор сахара — 143,5 ц/га; по гибридам РМС-135, Стандарт, Герой, УкрМС-72, Аксу и Айшолпан эти показатели составили соответственно — 846,4 ц/га, 17,2 %, 145,6 ц/га; 1416,4 ц/га, 18,5 %, 262,0 ц/га; 1235,4 ц/га, 19,8 %, 244,6 ц/га; 1022,9 ц/га, 18,3 %, 187,2 ц/га; 1145,7 ц/га, 18,6 %, 213,1 ц/га; 1174,2 ц/га, 20,5 %, 240,7 ц/га (таблица 2).

Выводы

1. Агрометеорологические условия 2018 г. в период вегетации сахарной свеклы можно отнести к благоприятным по температурному режиму и степени увлажнения. Все это в определенной мере отрази-

18 Земледелие и защита растений № 5, 2019