Агрохимическая эффективность универсального жидкого органоминерального удобрения Рокогумин при возделывании сельскохозяйственных культур на дерново-подзолистых почвах Республики Беларусь

Е.Г. Мезенцева, Н.Н. Ивахненко, О.Г. Кулеш, кандидаты с.-х. наук, А.А. Грачева, младший научный сотрудник, С.М. Шумак, главный агроном, О.А. Шедова, агроном 1 категории Институт почвоведения и агрохимии

(Дата поступления статьи в редакцию 11.03.2016 г.)

В статье представлены результаты исследований агрохимической эффективности универсального жидкого органоминерального удобрения Рокогумин на дерново-подзолистых почвах. Показана эффективность удобрения при возделывании озимой пшеницы, яровых ячменя и рапса, сои и кукурузы.

Введение

Оптимизация минерального питания сельскохозяйственных культур является одним из важнейших факторов повышения их продуктивности и улучшения качества получаемой растениеводческой продукции. В этом плане в последние годы активно разрабатываются новые формы комплексных минеральных удобрений, жидких хелатных микроудобрений, регуляторов роста. Поэтому агрохимический интерес представляет новое универсальное жидкое органоминеральное удобрение Рокогумин. Удобрение производится из куриного пера, сжиженного в результате термохимической реакции, и представляет собой своеобразный субстрат из аминокислот, пептидов и кератина с добавлением гуматов, обогащенных микроэлементами. Удобрение Рокогумин на 30 % состоит из животного белка, представленного 15 аминокислотами, около 30 хелатированных микроэлементов, среди которых железо, цинк, медь, марганец, сера, бор и молибден, содержит связанные азот (5 %), фосфор (3 %) и калий (3 %). Данный препарат обеспечивает быстрый рост в начальной стадии вегетации и устойчивость к неблагоприятным погодным условиям, повышает устойчивость культур к болезням и вредителям, способствует скорейшей регенерации поврежденных растений. Способствует улучшению качественных характеристик возделываемых культур.

Методика и объекты исследований

Полевые опыты по изучению эффективности жидкого органоминерального удобрения Рокогумин при возделывании озимой пшеницы, яровых ячменя и рапса, сои и кукурузы в почвенно-климатических условиях Республики Беларусь проведены в 2014-2015 гг. в ОАО «Гастелловское» Минского района Минской области на дерново-подзолистой легкосуглинистой почве и ПРУП «Экспериментальная база им. Котовского» Узденского района Минской области на дерново-подзолистой супесчаной почве. Агрохимические показатели пахотного слоя дерново-подзолистой легкосуглинистой почвы: рН в КСІ - 6,1-6,3, содержание гумуса - 2,2-2,6 %, подвижных соединений $P_2O_5 - 520-540$ и $K_2O - 400-420$ мг/кг почвы. Агрохимические показатели пахотного слоя дерново-подзолистой супесчаной почвы: рН в КСІ – 5,8-6,0, содержание гумуса -2,2-2,6 %, подвижных соединений $P_2O_5 - 180-200$ и K₂O − 150−220 мг/кг почвы.

Схема опыта по внесению органоминерального удобрения Рокогумин включала следующие варианты:

1) озимая пшеница – двух- и трехкратное применение в

The researches results of agricultural chemistry efficiency of universal liquid organomineral fertilizer of Rokogumin on sod-podzolic soils in article are presented. Fertilizer efficiency at winter wheat, spring barley and rape, soy and corn tillage is presented.

- дозе 2,5 л/га в фазы: первого узла, появления полного развития флаг-листа, колошения;
- яровой ячмень в два и три срока (в дозе 2,5 л/га): в фазы первого узла, полного развития флаг-листа, стадию колошения;
- 3) кукуруза одно- и двукратно (в дозе 5 л/га): в фазы 6–7 и 8–10 листьев;
- соя в два и три срока (в дозе 2,5 л/га): в фазы 5–6 листьев, бутонизации и цветения;
- яровой рапс в два и три срока (в дозе 2,5 л/га): в фазы стеблевания, бутонизации и цветения.

Площадь делянок – 24–36 м², повторность вариантов – четырехкратная. Агротехника возделывания изучаемых культур – общепринятая для Республики Беларусь [1–5].

Результаты исследований и их обсуждение

Результаты двухлетних исследований показали, что при возделывании озимой пшеницы урожайность формировалась на уровне 58,5-79,3 ц/га (таблица 1). За счет плодородия дерново-подзолистой легкосуглинистой почвы сформировано 58,5 ц/га зерна озимой пшеницы. Применение минеральных удобрений в дозе $N_{80+40+30}P_{90}K_{150}$ способствовало достоверному увеличению урожая зерна до 75,3 ц/га, обеспечивая дополнительный сбор зерна на уровне 16,8 ц/га, что на 29 % превышало урожай, полученный в варианте без удобрений. Дополнительное проведение некорневых обработок посевов озимой пшеницы органоминеральным удобрением Рокогумин оказало положительное влияние на урожай зерна. За счет двукратных обработок урожайность озимой пшеницы достоверно увеличилась на 3,7 ц/га, или на 5 % относительно фонового варианта, и составила 79,0 ц/га. Применение трехкратной обработки удобрением Рокогумин в дозах по 2,5 л/га способствовало росту урожайности озимой пшеницы до 79,3 ц/га зерна, что было на уровне данного показателя, полученного при двукратной обработке посевов.

Наряду с показателями урожайности большое значение имеет качество зерна, важнейшими из которых являются содержание белка и клейковины, от уровня которых напрямую зависят технологические и хлебопекарные качества пшеницы. Увеличение общего количества белка в зерне решает одну из проблем качества зерна, идущего на корм. Содержание белка изменялось в пределах 9,6—11,9 % при его сборе 5,9—9,5 ц/га (таблица 1). Отмечена положительная тенденция увеличения белковости зерна от применения некорневых обработок посевов озимой пшеницы удобрением Рокогумин на фоне N₈₀₊₄₀₊₃₀P₉₀K₁₅₀

Земле∂елие и защита растений № 4, 2016

с максимальным содержанием белка и сбора белка при трехкратной системе подкормок удобрением. Содержание клейковины варьировало от 21,0 до 28,6 % с максимальным достоверным показателем при трехкратном применении удобрения Рокогумин.

При возделывании ярового ячменя за счет плодородия дерново-подзолистой супесчаной почвы получено 27,8 ц/га зерна ячменя (таблица 2). Применение минеральных удобрений обеспечило дополнительный сбор зерна 14,5 ц/га при урожайности 42,3 ц/га.

Двукратная некорневая обработка посевов ячменя удобрением Рокогумин в дозе 2,5 л/га оказала положительное влияние на урожай культуры, обеспечив достоверную прибавку зерна (3,4 ц/га). Трехкратное применение удобрения Рокогумин, по сравнению с двукратным внесением, оказалось более эффективным приемом, обеспечив повышение урожая зерна на 5,1 ц/га по отношению к минеральному фону при максимальной урожайности по опыту – 47,4 ц/га.

Некорневые обработки посевов ярового ячменя органоминеральным удобрением Рокогумин оказали положительное влияние на качественные показатели зерна. От применения двух- и трехкратных обработок содержание белка достоверно увеличилось на 1,0 и 1,3 % при увеличении сбора сырого белка, по сравнению с минеральным фоном, на 0,7 и 1,0 ц/га, соответственно.

При соблюдении всех агроприемов возделывания сои внесение минеральных удобрений в дозе $N_{30}P_{60}K_{120}$ обеспечило формирование урожайности на уровне 10,6 ц/га зерна (таблица 3). За счет некорневой двукратной обработки посевов сои жидким органоминеральным удобре-

нием Рокогумин получено дополнительно 1,6 ц/га семян (13 % по отношению к минеральному фону). Трехкратное применение удобрения Рокогумин оказалось еще более эффективным приемом, обеспечив дополнительно 2,9 ц/га зерна сои с максимальной урожайностью в опыте 13,5 ц/га.

Важнейшим компонентом сои, ради которого она преимущественно возделывается, является белок, вторым по значению – масло. Содержание протеина варьировало от 35,3 до 38,5 %. При этом установлено, что некорневая двукратная подкормка удобрением Рокогумин в дозе 2,5 л/га обеспечила увеличение сбора сырого белка на 18 % по отношению к минеральному фону (4,0 ц/га). Дополнительная третья обработка посевов культуры органоминеральным удобрением в фазе цветения способствовала получению максимального сбора белка — 4,5 ц/га при увеличении его на 32 % по отношению к минеральному фону. Содержание жира в зерне сои варьировало в пределах 19,4—20,0 %, при этом различия между вариантами были статистически недостоверными.

Установлено, что при погодных условиях 2014—2015 гг. урожайность ярового рапса в зависимости от применяемой системы удобрения составила 16,5—21,7 ц/га. При внесении минеральных удобрений в дозе $N_{90+30}P_{20}K_{30}$ урожайность семян культуры увеличивалась на 3,6 ц/га и составила 20,1 ц/га (таблица 4). Некорневые подкормки посевов рапса жидким органоминеральным удобрением Рокогумин способствовали статистически достоверному увеличению урожая семян на 1,1 ц/га от двукратного применения и на 1,6 ц/га — от трехкратного по отношению к минеральному фону.

Таблица 1 – Влияние органоминерального удобрения Рокогумин на урожайность и качество зерна озимой пшеницы на дерново-подзолистой легкосуглинистой почве

Вариант	Урожай- ность, ц/га	+/-, ц/	′га	Белок,	Сбор	Клейко- вина, %
		к контролю	к фону	%	белка, ц/га	
Без удобрений (контроль)	58,5	_	_	9,6	5,9	21,0
$N_{80+40+30}P_{90}K_{150}$	75,3	16,8	-	11,0	8,1	26,1
$N_{80+40+30}P_{90}K_{150}$ $ o$ Рокогумин, 2,5 $ o$ 2,5 л/га	79,0	20,5	3,7	11,6	9,1	27,9
$N_{80+40+30} P_{90} K_{150} o$ Рокогумин, 2,5 $ o$ 2,5 $ o$ 2,5 л/га	79,3	20,8	4,0	11,9	9,5	28,6
HCP ₀₅	2,0			1,0		2,0

Таблица 2 – Влияние органоминерального удобрения Рокогумин на урожайность и качество зерна ярового ячменя на дерново-подзолистой супесчаной почве

		T			T .	
Ponyour	Урожайность,	+/-,	ц/га	Белок, %	Сбор белка,	
Вариант	ц/га	к контролю	к фону	Bellok, %	ц/га	
Без удобрений (контроль)	27,8	_	_	9,1	2,2	
N ₆₀₊₃₀ P ₁₅ K ₃₀	42,3	14,5	-	11,5	4,2	
N_{60+30} Р $_{15}$ К $_{30}$ $ o$ Рокогумин, 2,5 $ o$ 2,5 л/га	45,7	17,9	3,4	12,5	4,9	
$N_{60+30} P_{15} K_{30} o $ Рокогумин, 2,5 $ o$ 2,5 $ o$ 2,5 л/га	47,4	19,6	5,1	12,8	5,2	
HCP ₀₅	1,8			0,9		

Таблица 3 – Влияние органоминерального удобрения Рокогумин на урожайность и качество зерна сои на дерново-подзолистой супесчаной почве

Вариант	Урожайность,	+/-, ц/	га	Протеин,	Жир, %	Сбор протеина, ц/га
	ц/га	к контролю	к фону	%		
Без удобрений (контроль)	9,5	-	_	35,3	19,9	2,9
N ₃₀ P ₆₀ K ₁₂₀	10,6	1,1	_	37,3	19,4	3,4
$N_{30} P_{60} K_{120} o$ Рокогумин, 2,5 $ o$ 2,5 л/га	12,2	2,7	1,6	38,5	19,5	4,0
$N_{30} P_{60} K_{120} o$ Рокогумин, 2,5 $ o$ 2,5 $ o$ 2,5 л/га	13,5	4,0	2,9	38,5	20,0	4,5
HCP ₀₅	0,5			1,2	Fф <f<sub>05</f<sub>	

Таблица 4 – Влияние органоминерального удобрения Рокогумин на урожайность ярового рапса на дерново-подзолистой суглинистой почве

Вариант	Урожайность, ц/га семян	+/–, ц/га		Белок,	Жир,	Сбор белка,
		к контролю	к фону	%	%	ц/га
Без удобрений (контроль)	16,5	_	-	23,9	47,1	3,3
N ₉₀₊₃₀ P ₂₀ K ₃₀	20,1	3,6	_	24,2	47,3	4,2
$N_{90+30}P_{20}K_{30} o $ Рокогумин, 2,5 $ o$ 2,5 л/га	21,2	4,7	1,1	24,3	47,6	4,4
$N_{90+30}P_{20}K_{30}$ $ o$ Рокогумин, 2,5 $ o$ 2,5 $ o$ 2,5 л/га	21,7	5,2	1,6	24,2	47,7	4,5
HCP ₀₅	0,8			Fφ <f<sub>05</f<sub>		

Таблица 5 – Влияние органоминерального удобрения Рокогумин на урожайность и качество зерна кукурузы на дерново-подзолистой суглинистой почве

Вариант	Урожайность,	+/–, ц/га		Содержание, %			Сбор
	ц/га	к контролю	к фону	белок	жир	крахмал	белка, ц/га
Без удобрений (контроль)	106,9	_	_	7,9	6,8	70,7	7,2
N ₉₀₊₄₀ P ₃₀ K ₈₀	120,6	13,7	_	9,4	7,0	70,4	9,7
$N_{90+40}P_{30}K_{80} \rightarrow$ Рокогумин, 5 л/га	132,9	26,0	12,3	9,5	6,9	69,5	10,9
$N_{90+40}P_{30}K_{80} o $ Рокогумин, $5 o 5$ л/га	124,4	17,5	3,8	9,6	6,6	69,8	10,3
HCP ₀₅	7,4			0,5	F	Fф <f<sub>05</f<sub>	

Из всего комплекса показателей качества семян ярового рапса наиболее важное значение имеют масличность (жир) и содержание белка, количество которых изменяется от сортовых особенностей культуры, условий внешней среды и агротехнических приемов возделывания. Содержание белка в семенах ярового рапса по опыту варьировало от 23,9 до 24,2 %, масличность семян от 47,1 до 47,7 %, при этом все различия по вариантам статистически недостоверны (таблица 4). Исследования показали, что за счет некорневых подкормок удобрением Рокогумин сбор сырого белка увеличился в основном за счет более высокой урожайности семян рапса. Так, двукратное и трехкратное применение удобрения Рокогумин способствовало увеличению сбора сырого белка на 0,2 и 0,3 ц/га или на 5-7 % по отношению к минеральному фону.

В результате возделывания кукурузы на зерно на дерново-подзолистой легкосуглинистой почве установлено, что внесение минеральных удобрений способствовало получению 120,6 ц/га зерна (таблица 5). Обработка посевов кукурузы удобрением Рокогумин в фазе 6-7 листьев развития кукурузы в дозе 5 л/га оказала достоверное влияние на урожай зерна – прибавка по отношению к варианту без удобрений составила 26,0 ц/га, к минеральному фону - 12,3 ц/га, при максимальной урожайности кукурузы 132,9 ц/га зерна. Следует отметить, что двукратное примнение Рокогумина в посевах кукурузы (5 \rightarrow 5 л/га) оказалось менее эффективным приемом (статистически недостоверным) в сравнении с однократной обработкой, увеличив урожай зерна на 3,8 ц/га по отношению к минеральному фону и снизив на 8,5 ц/га по отношению к варианту с однократной обработкой.

Установлено, что все изменения качественных характеристик зерна кукурузы (содержание белка, жира и крахмала) варьировали в узких пределах и не зависили от системы удобрения – все различия находились в пределах ошибки опыта (таблица 5). За счет однократной обработки посевов кукурузы выход сырого белка составил 10,9 ц/га, что на 11 % выше относительно минерального фона. Двукратное применение удобрения Рокогумин оказалось менее эффективным приемом по показателям накопления жира в зерне и сбора белка относительно однократного его применения, при равнозначных показателях содержания белка и крахмала.

Заключение

В результате изучения эффективности универсального жидкого органоминерального удобрения Рокогумин в почвенно-климатических условиях Республики Беларусь установлено, что применение двух— и трехкратных некорневых обработок посевов озимой пшеницы удобрением в дозе 2,5 л/га достоверно увеличивает урожайность на 3,7—4,0 ц/га зерна с улучшением его качества. Дополнительная третья обработка посевов озимой пшеницы в стадию колошения не имеет преимуществ перед двукратным применением удобрения Рокогумин.

Двух— и трехкратные некорневые обработки посевов ярового ячменя удобрением Рокогумин в дозе 2,5 л/га способствуют достоверному увеличению урожайности на 3,4—5,1 ц/га зерна с увеличением его белковости.

Применение двух- и трехкратных некорневых обработок посевов сои удобрением Рокогумин в дозе 2,5 л/га способствует увеличению урожайности на 1,6–2,9 ц/га зерна с улучшением его качества.

Некорневые двух- и трехкратные подкормки посевов ярового рапса жидким органоминеральным удобрением Рокогумин способствуют статистически достоверному увеличению урожайности на 1,1–1,3 ц/га семян без изменения их качественных показателей.

При возделывании кукурузы на зерно эффективным приемом повышения урожайности на 12,3 ц/га зерна без изменения его качественных характеристик является применение некорневой обработки посевов удобрением Рокогумин в дозе 5 л/га в фазе 6–7 листьев развития растений.

Литература

- Методические указания по проведению регистрационных испытаний макро, и микроудобрений и регуляторов роста растений в посевах сельскохозяйственных культур в Республике Беларусь / В.В. Лапа [и др.] / НАН Беларуси, Ин-т почвоведения и агрохимии; под ред. В.В. Лапы. – Минск, 2008. – 36 с.
- Организационно—технологические нормативы возделывания зерновых, зернобобовых, крупяных культур: сб. отраслевых регламентов / Нац. акад. наук Беларуси, НПЦ НАН Беларуси по земледелию; рук. разраб.: Ф.И. Привалов [и др.]; – Минск : Беларус. навука, 2012. – 288 с.
- Давыденко О.Г. Соя для умеренного климата / О.Г. Давыденко, Д.В. Голоенко, В.Е. Розенцвейг. – Минск: Тэхналогія, 2004. – 173 с.
- Справочник агрохимика / В.В. Лапа [и др.]; под ред. В.В. Лапа. Минск: Белорус. наука, 2007. – 390 с.

Земледелие и защита растений № 4, 2016